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Minimizing Energy Consumption In Large-scale
Sensor Networks Through Distributed Data
Compression And Hierarchical Aggregation
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Abstract—In this paper we study how to reduce energy by the network, e.g., through distributed source coding[5],
consumption in large-scale sensor networks which systematically [6], [7] and/or data aggregation/header compression[8], [9].
sample a spatio-temporal field. We begin by formulating a gecond, by making the transport of traffic on a sensor network

distributed compression problem subject to aggregation (energy) 2 .
costs to a single sink. We show that the optimal solution energy efficient, e.g., through energy-aware routing[10], [11]

is greedy and based on ordering sensors according to their and/or distributed medium access CO”trOl[lZ]. In this paper we
aggregation costs— typically related to proximity— and, perhaps address the following questions:

surprisingly, it is independent of the distribution of data sources. imall _ .
Next we consider a simplified hierarchical model for a sensor 1) How to optimally arrange distributed compression sub-

network including multiple sinks, compressors/aggregation nodes ject to aggregation costs tosingle sink?
and sensors. Using a reasonable metric for energy cost, we 2) How to optimally arrange hierarchical architectures for
show that the optimal organization of devices is associated aggregation/compression in large-scale sensor networks

with a Johnson-Mehl tessellation induced by their locations. including multiple sinks?
Drawing on techniques from stochastic geometry, we analyze

the energy savings that optimal hierarchies provide relative Our aim is to minimizeoverall aggregation costs, i.e., energy
to previously proposed organizations based on proximity, i.e., expenditures, associated with gathering sensor information. In

associated Voronoi tessellations. Our analysis and simulations . - P .
show that an optimal organization of aggregation/compression practice the spatial distribution of such expenditures may be

can yield 8-28% energy savings depending on the compressioncfitical. Indeed if nodes do not have renewable sources of

ratio. energy, their batteries may become quickly depleted. Thus, as
Index Terms— Sensor networks, distributed data compression, 'n_ [13], _'t also make§ _Sense to address_th? above questions
data aggregation, stochastic geometry with a view at maximizing the network’s lifetime, rather than
minimizing the overall energy expenditure. In the sequel we
|. INTRODUCTION will argue that the two cost functions are not ‘orthogonal’ and

N emerging vision for the future is that of a physica§0|Uti°”5 minimizing pverall energy cpn;gmption can pe .used
A (or virtual) world embedded with networked sensor@S @ good starting point towards maximizing network lifetime.
and actuators. The interweaving of local sensing/actuation,There has been much related work in this area. In partic-
communication, and computation with decision-making arilar we will draw on a substantial body of work studying
control has broad applicability, including: transportation, envthe scaling and possible implementation of distributed com-
ronmental monitoring/oversight, structural monitoring, healtAression mechanisms for sensor networks, e.g., see [5], [6],
care, and national security. Progress is being made tow&fli Our main contribution to this literature is to explicitly
increasing the diversity of available sensors, while new tecitroduce aggregation costs in the distributed compression
nologies permit the flexible deployment of small, inexpensiv&roblem. The work of [14] is also closely related to ours.
devices operating on limited battery power and which arf€h€y propose a particular organization, based on proximity,
interconnected via wireless links [1], [2], [3], [4]. In this papePf sensors and cluster-heads leading to a Voronoi tessellation
we consider distributed compression and aggregation scheffiedhe sensing field. Their goal is to optimize the size of
for large scale sensor networks gathering information onCHIsters so that the overall energy consumption of the network
spatio-temporal field. A key challenge for such applicatiori§ minimized. By contrast, in this paper we attempt to devise
lies in devising system architectures and protocols to reali@@ optimal hierarchical organization of sensors, aggregation
the required sensing and communication tasks subject to hBgints/compressors, and sinks, to minimize the cost of gath-
system constraints, in particular, energy. ering sensor data.

The focus of this paper is on achieving energy efficiency The organization and main contributions of this paper can
in two ways. First, by simply reducing the traffic transportetle summarized as follows. In Section Il we formulate and

. . . . solve an optimal distributed compression problem subject to
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Sensed location  Sensor data . L .
. > mine the rate vectof* that minimizes the overall aggregation

° (x D’_') cost subject to joint data compression constraints, i.e.,
[ |

min{i:wi | Zri > H(Dg|Dg<), VS C U}.

=1 eSS
Note that the feasible rate region is defined &y — 1
inequality constraints. Fortunately, one can show that the

(XpDpe feasible rate region hascantra-polymatroidstructure leading
/. ¢ ° to the following greedy solution.
' ‘ Theorem 1:Supposew; > wy > --- > w,, then the
L , optimal solution to Problem 1 is given by
Aggregation cost v Coverage area: A
. . . ) Tik = H(D1|D2aD37"'aD’n)7
Fig. 1. An illustration of the sensor reporting. 5 = H(Ds|D3, Dy, ,Dy), -, 15 = H(Dy).

A contra-polymatroid is a polyhedron defined as follows:

Leveraging previous work on stochastic geometry, we estimate _ == n

and co%wp%r!ae the costs associated withgvariousyorganizational B(f) = {x |7 ERY, Zml = f(5),¥S ¢ U}’
structures including those based on simply relaying traffic

to the closest compressor or sink. These provide insights Where f : 2V — R, is called the rank function satisfying
where these structures are likely to be effective. In Section V (1) f(0) = o0;

we provide numerical and simulation results for the energy ’ .
savings obtained by using the optimal hierarchical scheme (2) f(5) =< f(T) v§ cT; (monotonicity
and discuss some design issues associated with the large-scale ~ (3) f(S) + f(T) < f(SUT) + f(SNT)
sensor networks. We conclude the paper in Section VI. (super-modularity.

€S

[l. OPTIMAL DISTRIBUTED DATA COMPRESSION SUBJECT FOr such constraint sets the following result has been proved,
TO AGGREGATION COSTS TO A SINGLE SINK see e.g., [16].

. H >k H H H 1 -
We begin by examining how to best realize distributep Lemma {.Asalutmnr to the following optimization prob
: : : inlam wherew € R,
data compression subject to aggregation costs to a single

sink. As illustrated in Fig.1, we consider a set of sensors _ - .

U ={1,2,---,n} at locationsz = (z;,7 € U) within a mrln{zwi'm TGB(f)}v

coverage aread C R? and sink placed at the origin. We i=1

model information obtained by these sensors as a rand@m given by r; y = f{=(1)}) and Thy =
vector D = (D;,i € U), and suppose the sink coordinateg ({w(1),7(2),--- ,7(¢)}) — f{{r(1),7(2)---7(: — 1)}),
and aggregates the information from the sensors. Since sensors= 2,3,--- ,n, where = denotes a permutation of
are located at different positions, they may incur differert,2,--- ,n) such thatw, )y > wr2) > -+ > Wr(n).

aggregation costs in forwarding their data to the sink. Wehe key step to proving Theorem 1 is showing that the
use a vectons = (w;,i € U) to model these costs, whereconditional entropy functiorf(S) = H(Dg|Ds-) is a rank
w; is the cost of moving a unit of data from sengoto the function so the constraints in Problem 1 define a contra-
sink. For example, the aggregation costs can be modelled gilymatroid. The result then follows immediately by Lemma
w; = |x;]7, i.e., a function of the distance from sensdo the 1. The derivation of this result follows by a fairly straight-
sink. Thus fory = 1 the cost for sensaris proportional to its forward argument—we refer the readers to [17] for a detailed
distance (a rough estimate for the number of hops) to the simkoof.
Also if the sensor communicates directly with the sink then Theorem 1 implies that a data compression strategy that
for v € (2,4) this cost might capture the increased transmihinimizes the aggregation cost can be obtained by a simple
power levels required to overcome path loss on a wireless lirkedering of the sources based on their aggregation cost. Sur-
The information collected by the sensors is likely to bprisingly, the optimal solution is independent of the underlying
correlated and thus it is possible to jointly compress the datarrelation structure of the data sources or absolute values for
they generate. Lef’ = (r;,i € U) denote the number of these costs. Also note that Slepian-Wolf's result generalizes
bits per reading each sensor would generate. Then by Slepitmergodic data sources[15], so Thm.1 easily extends to data
Wolf's Theorem, the sum of the rates for any subset of sens@@urces which are spatio-temporally correlated, by replacing
S c U is lower bounded by conditional entropy,(Ds|Ds<), conditional entropies with conditional entropgtes
where Dg = (D;,i € S) and Dg. = (D;,i € U\ S) [15]. Let us briefly evaluate the performance gains that might be
Our objective is to jointly compress the sensed data whiehieved under optimal compression. Suppose we deploy 10
minimizing the overall aggregation cost. We can formally statensors at a set of randomly selected locatiéns a square
the problem as follows. areaA = [—1,1]% with a sink located at the origin. We
Problem 1: For a set of device#/ sensing an information shall model the sensed data as a stationary Gaussian field with
vector D, and an associated aggregation cost vecfbteter- zero mean and a spatial covarianger;, x;) = 10e~0lwi ==l
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Performance impact of correlations and distance exponent

Lo 140 150 220 260 00 using optimal distributed compression. In addition, in practice,

2 ‘ Distance exponenty ‘ such nodes might play a key role in further compressing data

,o| © improvement withy i sent to the sinks through aggregation/header compression. We
—=— improvement with 6

will focus on this second role in this section. Our objective is
to study how to best arrange such hierarchies so as to minimize
the overall energy costs. Due to the complexity of and spatial
character of problem, we will use the methodology proposed
in [18]. The idea is to use crude stochastic geometric models
to capture the salient features of the system.
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ol ] A. Hierarchical organization and energy models

We shall assume the sensor, compressor and sink loca-
tions are determined by homogeneous Poisson point processes
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Iy, II; and II,, with intensities\g, A1 and Ay respectively.

We also assume that sinks may serve as compressors, i.e.,

_ ] - _ it may gather data directly from sensors if necessary. We

Fig. 2. The figure exhibits the percent energy savings as a funcliope the |ocation of a node as an index for the device itself.

of the correlatior) among data sources, and percent energy savmgi;ﬁ . d tes th t locati I

as a function ofy whené¢ = 0.1. usz; € lly deno fas e sensor a oqa iR, c; e. 1 a
compressor at location; and s; € II, a sink at locationsy,.

Our model for a hierarchical organization of these nodes is

where# models the rate of decay in the correlation betwedt#Sed on two mappings. Let Il — II, U1l be a mapping
sensed dat®; and D;, as a function of the distance betwee@Ssociating a sensar; with a compressor or sink(z;) and
sensor locations; andz;. This implies a correlation structures : Il U1l> — II, be a mapping associating a compressor or
for the sensor dataD that is dependent on the location$iNK ¥i With a sinks(y;). If y; is a sink it is associated with
of the sensors. To estimate the rates generated by sendSRlf In the sequel we will consider various organizational
we suppose they are equipped with a 4-bit A/D convertetiructures, i.e., various choices for the functiensnds.

015 0.20
Correlation parameter 6

and thus approximately (D;|D;;1, Dito, - Dn) = 4 + Next we propose a rough model for the energy costs
h(D;| D11, Diya, -+ - D) Whereh(-|-) is the conditional dif- associated with aggregation. We will assume that sensors and
ferential entropy of the Gaussian source. compressors communicate over an ad hoc network of wireless

We will compare thepercentage reduction the aggre- links, so packets will be relayed over multiple hops toward

gation cost for our optimal scheme versus a baseline whillifir destination. Thus the overall aggregation cost in the
achieves optimal compression but allocates bits based of¥gtem Will be proportional to the number of packets that
random ordering of sensors. Fig.2 shows the case whéed to be relayed. The energy cost per packet will depend
the weight for sensoi depends on its distance to the sini" the overheads to access the channel for transmission, and

|z;]. As expected, the benefits decrease as correlation acr88§79Y expended during transmission. The latter would in turn
sensed data decreases. This is intuitive since eventually end on the size of the packet and the distances involved.

no correlation, i.e., independence, there will be no beneYife shall assume that packets have roughly the same size. Also

for optimal distributed compression. Fig.2 also shows tf$Suming the devices are distributed in a fairly homogenous
performance improvement when the weights are givefrhy manner it is reasonablfa to assume the energy cost per packet
and~ € [1,3]. As might be expected, larger exponenttead relayed in the network is roughly the same, and the number of
to higher differences in the aggregation costs among sens'B?@s required to travel between two locations is proportional to
and thus higher the performance gains. distance between them. Suppose then that senspenerates

d., packets/sec to its compressgr= c(x;). The total traffic

received byc; would be
Ill. OPTIMAL HIERARCHICAL STRUCTURES FOR

COMPRESSION AND AGGREGATION TO MULTIPLE SINKS Z dy, packets/sec

The scheme discussed in the previous section will not scale {wize(@i)=e;}
as the number sensors grows. Specifically, if the overall datad the total energy expended in the network to carry this
produced increases, it will eventually overwhelm the sink. &affic is roughly proportional to

more reasonable scenario for a large scale sensor network, is J kets-hoos/
one with a three level hierarchy, including: at the top multiple > x;|wi —¢j| packets-hops/sec
sinks, e.g. wired nodes; at an intermediate level, a class (sen- {wae(zi)=c;}

sor) nodes that serve as intermediate traffic aggregators and/dRecall that each compressey aggregates incoming data

in-network compressors; and at the bottom a collection ahd possibly further compresses it prior to forwarding it to the
spatially distributed sensors. Each intermediate node collesisk s(c;). Aggregation may make use of context dependent
data from an associated set of sensors and forwards it to a sinkormation to compress the data it forwards to the sink. For
Thus such nodes may minimize the energy costs to gather dexample, if sensors are fixed a sink will eventually know which
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sensors are assocaited with a compressor, and it in turn need all points in the plane which are closer tg than to any
not forward location information for each data sample. Wether point inII.
will assume that; forwards packets at a rate Let V(II; UTI,) denote the Voronoi tessellation induced by
the union of compressors and sinks U Il and let us define
o d,, packets/sec . . o
es (o (z:) N o P a hierarchical organization as follows. Lst : Iy — II; UTI,

be such that for each; € IIj,
to its associated sink; = s(c;), incurring an additional
energy cost which is proportional to

o2y Z dy,

. {zic(xi)=c;}

Cv(l‘i) =Yj, iff x; € Vyj (H1 @] Hg).

HereV,, denotes the closure of the sif,. Mathematically

the probability that a sensor will fall on the boundary of sets
V,; vanishes. However, if a sensor is observed to be located on
The parametera., € [0,1] captures the gross benefit ofthe boundary due to the finite granularity in the positions of
aggregation and compression resulting freis processing nodes, such ties must be broken arbitrarily. L&fI,) denote

and forwarding of sensor data. the Voronoi tessellation induced by the sirlks, and define a

Our goal is to capture the salient features of such a hieraiappings : II; UIl, — II,, such that for each, € I1, UTIy,
chy, so it makes sense to assume that each sensor nodes offer . —
roughly the same traffic load, i.e., without loss of generality we sv(y;) = s, iff y; € Vi, (Ilz).
let d,, = 1 for all z; € IIy, possibly representing an average
load per sensor to its aggregation point after distributed . .
compression. In addition, assuming that the set of sensg%at'on for sensors, compressors and sinks based purely on

associated with a given compressor node is sufficiently lar erOX'm'ty rather than achieving our goal, i.e., minimizing the

L . . o . rlergy cost of aggregation. In particular a sensor may connect
and variations inx.; will not be significant, we will assume 9y 9greg P y

that all compressoriaggregating nodes are equally eflecty@, '® CCSR FORRCRREY B E T FeaY FOE ROl
i.e., a.; = «a for all compressor nodes; € II;. With these P

. . o its eventual sink and thus results in an energy savings.
two assumptions we obtain an additive energy cost modgf . o )
with a cost per sensoe(x;), which is proportional to éI.OW we def!ne 'the tessellgtloﬁ (I, ITz) that mcjuces gn
optimal organization for a given overall compression ratio
e(xi) = |zi — c(x:)| + ale(z:) — s(e(z:))]- 1) Definition 2: The tessellatior7 (11, II,) associated with
Note that, depending on the relative distances, in practi¥0 Sets of pomtsﬂé andll, and parametet, consists of a
it may indeed be more efficient for nodes to communicaf@!lection of cellsT{ (I, T1z) for y; € I, UTI, such that
directly Wlth aggreagation points or sinks. Our model can Tg (11, 11) = {z € R? | |z — y;| + aly; — sy (y;)]
be generalized to capture the direct communication among <le—ul+ _ Wy € T U T}
sensors, compressors and sinks. In this case, an energy cost of =yl +aly = svw)l, Yy € Ih UL}
" (x:) = |v; — c(xi)|” + ale(zs) — s(c(z:))|”, could be used We refer toT' (11, I1y) as the cell with nucleus;.
where represents the path loss exponent of the environmentrpe eyt theorem shows that this tessellation induces an
We refer the reader to [17] for results and analysis for of thi§ganization which minimizes the energy cost for each sensor.

generalization. Theorem 2: Under the energy cost model (1), the optimal
assignment of compressots € II; to sinks iss*(¢;) =
(¢;) € IIy, i.e., the closest sink te;. The optimal
signment of sensors; € Il to compressors or sinks

¢; — si| packets-hops/sec

The pair ¢y and sy capture a simple hierarchical orga-

B. Optimal sensor hierarchies and spatial tessellations

Our objective is, given our three point processes andgé
fixed gross compression ratig to determine the hierarchical.
organization, i.e. the functions(-) and s(-), that minimize . c*(z;) such thatw; € TZ (I, 1) € T9(IL, 1),

P . . i ... i.e., the compressor/sink which is the nucleus for the cell in

the overall energy cost in this network. Prior to consideri ®(T1,, TI) containingz:
optimal hierarchies let us consider a natural choice. It should b 2 v o o
be clear that from the perspective of minimizing our cost Froof: To prove ti‘at this h|erari:hy has minimal cost
metric, each compressor should relay packets to the closepsider a sensar; € Tp' (11, Il), soc”(zi) = y;. Suppose

sink. Similarly one might think it reasonable to assume eadh 'S @ssigned to some other compressor or ginknd then
sensor sends its traffic to the closest compressor or, ifSRMe Sinksy.. The energy cost for such an assignment would

is closer, directly to a sink. As discussed in [18] such be
hierarchical organization is induced by tieronoi tessellation e(x;)
generated by the locations of the sinks and compressors. A
\Voronoi tessellation with respect to a set of poiftscan be
defined as follows.

Definition 1: The Voronoi tessellation associated with
denotedV(II) is a collection of cellsV,, (II) for y; € II such
that

lzi — wi| + alyr — sl

lzi — il + aly — s (y)]

lzi — ;| + aly; — s™(y;)]

|zi — ¢ (@:)] + ale™(x;) — (" ()],

(A\VANAYS

where the first inequality follows from the definition gf and
the second inequality is a natural consequence of the definition
V() = {z € R? | |y; — 2| < |y; — 2|, Vy; € 1T}, of the cells in the tessellatioff *(I1;, I1,). [ |
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IV. ANALYTICAL RESULTS

In this section we will compare various organizational
hierarchies in terms of their expected energy costs.

A. Hierarchy based on Voronoi tessellation

Let us first consider the hierarchy based on Voronoi tessella-
tion whereby each sensor sends data to its closest compressor
or sink node, and compressor nodes relay a fractiaf the
traffic they receive to the closest sink. Following [18] we can
mathematically define an expected energy ¢dstunder such
an arrangement as

GV = Eg Z {a|cj|NCj

cj EﬂlﬂVO(Hg)

+ > i — el } + > il |

rienuﬂch (HlUHQ) T; EHoﬂVO(HlLJHQ)

where we have used the following conventioi%, denotes
the expectation with respect to the Palm distributi®fhof the
point procesdly, see [20]; andV,, is the number of sensors,
i.e., points inll, which are associated with compressor
that is in the cellV,, ().

Thus Gy corresponds to the energy cost associated with a
typical sink cellV,(II3). The first summand consists of two
terms: the first corresponds to the energy costs in forwarding
Fig. 3. The figure on the above shows the optimal Johnson-Mefpmpressed data from compressors to sinks, while the second
tessellation7 * (111, TT2) for compression ratiax = 0.5, and the corresponds to the energy cost of forwarding data from sensors
figure on the below shows the Voronoi tessellatiofil, UTl2). The o compressors. The second summand in the above expression

small dots represent compressordin and big dots represent sinks ;
in Il,. We have superposed the Voronoi tessellatigfl,) induced corresponds to energy costs of sensors that directly send data

by the sinks and drawn the boundaries with dashed straight lines. TRethe sink. One can use the results in [18] to evaluate the
organization of sensors to compressors or sinks, and compressoréxpected costy giving!:

sinks should be clear based on its location with respect to the two A
superposed tessellations. Gy = 0

aXg aXg
22V A1 + Az i 273/ B 2(AL + Ap)3/2

EH 12732 Mo Apa(m — ) siny cos® ydry
/o (mr(

1 _ 5/2°

The tessellatior? “(I1,, I1,) introduced earlier is a partic- 71+ 272) +02sin(2y) + Zz(m 7_) cos(27))*/
ular case of a Johnson-Mehl tessellation [19]. Let us briefly NOté that the same results can be applied to evaluate the
consider how this comes about by contrasting it with a VorongpSt of an aggregation hierarchy with no compressor nodes at
tessellation. One can visualize the Voronoi tessellation as fl I-€., sensors merely send uncompressed data to the closest
duced by a set of nuclei which grow grains isotropically at unink- Applying the results in [18] one finds the energy cost
speed until they come into contact with another nuclei’s graif.s for a typical sink cell is given by
These contact points become the boundaries of the cells of the Ao 1

tessellation. A Johnson-Mehl tessellation adds an additional TN 2V

degree of freedom. It allows the nuclei to start growing the’l[his can be interpreted as follows: the area of a typical sink

grains at different times. The tessellati@r (I1;, I15) results : g
; ) . . ; . cell is 1/\, and so the average number of sensors in that cell
if all sinks s, € Tl start growing grains together isotropically.

at unit speed. Subsequently each compressar 11, starts is expected to bao/As. Morepver one can show thaf y A2
: . . : N . corresponds to the mean distance from a sensor to its closest
growing a grain at time proportional t@|c; — s*(c;)| which ~ _.
. . , sink. Thus the average cost should be the product of these two
depends on its distance from the closest sink andThe

. . . terms.
resulting boundaries can be shown to be hyperbolic. In th|sAS will be seen in the sequel, it may be the case Gat>

tessellation, the cells associated with sinks will tend to be lar o . .
) . . . s for somea. Specifically whenx is close to 1 it may be
relative to others, since they start growing earlier. For a formal : S
. more expensive to route to a compressor which is close by
proof of this argument, we refer the readers to [17]. Examples
of a Voronoi tessellation and an energy optimal ‘]Ohnson'Methe have corrected an error in the derivations of [18] to get this expression

tessellation fore = 0.5 are shown in Figure 3. for Gy .
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rather than go directly to a sink. Thus a greedy aggregation
strategy based purely on proximity may be worse than not
using one at all.

B. Optimal hierarchy based on Johnson-Mehl tessellation

Next we evaluate the energy coély for the optimal
hierarchy introduced in the previous section. It is given by

Gr =E) > AalgNg

cj GnlmVU(Hg)

Fig. 4. The figure shows the bal|,(z) and Cartesian ovaDm(O,x)
+ E | - Cj‘} + E |x2| > associated with a potential (sensor) locatiorrat= (1,0) and sink at the
x; €MoNTe (T14,I15) z; €MoNTS (M1,II2) origin. In order for the sensor at (1,0) to be associated with the sink at the
J

origin, there must be no compressors in the Cartesian oval (a) and no other
where/\/gj denotes the number of sensors, i.e., point§ly sinks in region in the ball (b).
which are associated with compressgr and are within the
cell T (I1;,II5). Here G corresponds to the energy cost
assomated with a typical celVy(Ily) in the higher level optimal sink cell's area becomeﬁ which is the average
Voronoi tessellation induced by sinks. area of a typical cell of a Voronoi tessellation with density
As an intermediate step toward estimating the energy cost,+ \,. Clearly connecting to the nearest sink or compressor
let us consider the area of a typicgihk cell in the Johnson- is the optimal policy whermy = 0. Thus at the two extremes
Mehl tessellation7 “(II;, II;). Recall that cells associatedour Johnson-Mehl tessellation reduces to one of two Voronoi
with sinks will tend to be larger than others since they stachses. However whea € (0,1), we can expect to get cells
growing earlier, see Fig. 3. The following theorem, proved iwith hyperbolic faces associated with an optimal hierarchy.
the appendix, gives an explicit formula for the area of a typical Unfortunately since7“(II;,Il,) depends in an inhomo-
sink. geneous manner on the two point processes, estimating the
Theorem 3: Consider two point processds$; (compres- energy cost is quite challenging. As such, we derive an
sors) andll, (sinks) with densities\; and X, respectively. upper boundG; for the optimal energy cosf;. To do so,
The expected area of a typical sink cell in the tessellatidtbnsider yet another alternative hierarchical organization for

T<(Ily,12) is given by the sensor network. In this hierarchy the data associated with
BY[ 7210y, Thy)| | T a sensorz; is necessarily routedo its closest sinksy (z;).
2L 1Fo A e Fla)Ay 4+ Ao This data may however be routed either directly to the sink or

via a compressor depending on which option minimizes the
contribution to the energy cost of the system. Lettingx;)
denote the energy optimal routing choice for sensoi.e., to
a sink or compressor, the associated energy cost is given by

where |T'| denotes the area of a st and f(«) is defined
as follows. We IeO“(xl, x2) denote the Cartesian oval with
foci at 21,22 € R2, given by

0§ (w1, 22) = {y €R* | aly — 1| + [y — 22| < B},
and letf(«) be the area 0O (0, z) when|z| = 1. Thenf(«)

e(wi) = |zi — cu(@i)] + aley (z:) — sv ()] 3)

Although this hierarchy is suboptimal it is quite close to the

's given by optimal one. In particular sensors which are not close to the
B 4 1 L boundary of the Voronoi cells associated with the point process
Je) = (1—-a?)? {(2 ta )(2 sin”(a) of sinks, are likely to contribute the same energy costs as in
sin(2sin~! () = the optimal hierarchy.
4 —2acos(sin™ (@) r. (2) e can define the energy cost for a typical @@} for this

Note that the Cartesian ovalg(0,=) can be interpreted new hierarchical arrangement as
as the set of possible compressor locations with respect to
a sink at the origin and a sensor atthat would re;ult in Gy = E) Z (24,11, TL,)
a lower energy cost tha if used as a relay point, see
e.g., Fig. 4. One can show thgi«) is a monotonically
decreasing function im € [0,1] where f(0) = =, f(1) = 0. Under this new organization only sensors witfif(Il,) will
Thus whena = 1, i.e., there is no compression gain, thé&e associated with the origin, thus one can directly express
area of a typical sink cell becom% This is the average the energy cost of a typical cell as a sum over sensors in this
area of a typical cell for a Voronoi tessellation with densitgell. However the cost per sensor depends on the locations of
A2, thus connecting to the nearest sink must be optimal. Agmpressor and sink nodék andlIl, — we introducee; to
the other extreme ifv = 0, and thus the data which will make this explicit.
be relayed from compressors to sinks is negligible, then theThe following theorem, proved in the appendix, gives an

x; €MoNVo (TT2)
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explicit upper bound for the energy cost achieved by the Theoretical Energy Cost plot

. . —&— Optimal Bound (Gu)
optimal aggregation scheme. = Closed-fom approx.
. —&— Estimate oronol V,
Theorem 4: The energyGy is an upper bound for the o Wihout Compressors (65)
optimal costGr and is given by 30 A
Gy = 20T B3/2) +>\o>\1/ e amlel
(Ao + A1 f(a))?/2 R?

/o ( )(|y| +aly — z))e M Ohiratv—e "0l gy da(4)
ﬁ;‘ z,0

Energy expenditure per sensor

where f(a) and OF(z,0) are as defined in Theorem 3.
Furthermore,Gy is upper bounded b, given by

A Ao « 11—«
DY BV W e woll ©) TR S S S
2 2 2t Aesy 1591 0.2 03 0.4 05 0.6 07 08 09
Compression ratio o
_ f(o
where )\eff = %/\1 Impact of compressor density to energy cost savings

By Neveu exchange formula [18], one can interpret the
expression in the bracket of (5) as an average cost incurred
by atypical sensorObserve that for perfect compression, i.e.,
a = 0, we have thaff (0) = 7 so this term reduces Ai =
which corresponds to the typical cost of a sensor connecting
to the closest sink or compression. By contrast for the case
with no compression at all, i.eqq = 1, this term reduces to
ﬁ, the cost for a typical sensor to connect to its closest
sink. This clarifies the dependence of the energy cost on the
compression ratiax as we move among these two extremes.
Finally we note that through simulation we found thG;
gave an excellent approximation f6¥;; —the error was less
than 1.4%, see [17] for more details.

lower bound on energy savings(%)

0.4

0.6

ratio of density, A, /A, > compression ratio a

10 1

V. NUMERICAL AND SIMULATION RESULTS Fig. 5. The graph at the top exhibits a numerical evaluatiogf

We numerically evaluated the energy costs for the vaftv and our upper boundSy andGy for the optimal hierarchy, as
ous schemes discussed in the previous section. Nafiigly a ;umcg?qhzfﬁogg%’\gxiibilt’s’\éne:rgoyosg\f’ng(’j ﬁé;pg&ﬁ% g;e
corresponds to the case where sensors send directly to 35 function ofx and Az /A;.
sink without going through compressors;, the case where
sensors send to a compressor or a sink, whichever is closer, and
then compressors send to sinks, &hdis our upper bound for )
the optimal strategy. As seen at the top in Fig.5, the optim%tl]OWS the percent energy savings G, versusGs, as a

hierarchy (upper boundi;) can outperform those baseofunction of_a and Ao /). Note the sen_sitivity of thg savings
on Voronoi tessellation, i.eG’s and Gy. With a moderate 107 the optimal scheme increases with the density of com-
compression ratio, e.d).5 < a < 0.9, the percent energy pressor nodes. The intuition here is that for high densities of
savings of the optimal scheme versus the Voronoi scheie COMPressors whea changes, sensors will have more choices
is 6%6-26%. Also note that our closed-form approximation for candidate compressor nodes leading to higher savings.
is a tight upper bound off;: the error is within 1.4% of3y. In Fig.6, we show the spatial distribution of the energy
We have verified by simulation that the percent energy saving@ntribution e(z) for possible sensor locations under the
is in fact roughly 8%-28%. However it is very close to thé@ptimal hierarchical arrangement. Bright regions indicate areas
simulated cost, where the error is within 2%. Details of thehere sensors incur a higher energy cost to the overall system,
simulation methodology and results can be found in [17]. and dark regions are the areas with less cost. We observe
Observe that asy increases the second scherag, is that the energy contours vary in a smooth way. The reason is
inferior to G; this is intuitive sinceGy is constrained to that the optimal tessellation is constructed for each sensor to
connect to the closest compressor if there are no sinks Wh@H’Iieve the minimal cost at its |Ocati0n, and the cost function is
are closer, thus requiring a “detour” even when no compressigmooth function of the sensor positionsiifi By contrast, a
gain is available. Note however, our optimal scheme alwa§#nilar plot for the organization based on the Voronoi scheme
performs better than the other two. In particu|ar as sodﬁmltted herE) shows discontinuities at the cell boundaries
as the aggregation/compression nodes provide a reason&Bl€€ Sensors associate with closest compressors (or sinks)
compression ratio it is able to significantly reduce the overdfther than the minimum energy choices.
energy cost of the network. The plot at the bottom of Fig.5 In practice it is of interest to examine th@ffic congestion
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perform optimal distributed compression so as to minimize
aggregation (energy) costs to a sink. We then propose a
natural model for a large scale network including multiple
sinks, compressor/aggregation nodes, and sensors. We study
how to optimize this hierarchy so as to minimize the overall
energy consumption— the optimal hierarchy is shown to be
associated with a Johnson-Mehl tessellation induced by sinks
and compressor nodes. Using stochastic geometry we were
able to evaluate the average costs associated with such ar-
rangements and compare them with natural proximity based
organizations previously proposed. Our results suggest that
there are significant energy savings, 8-28 %, to be achieved by
optimizing compression and aggregation structures for sensor
Fig. 6.  Energy contribution plot for the optimal scheme whemé€tworks. However, minimizing the overall energy cost is
a = 0.5. The big and small dots represent sinks and compressdmgt part of the picture. In practice, when sensors have non-
respectively. replenishable energy sources, the objective will be to maximize
the network lifetime, e.g., time until a sensor expires or a
coverage constraint is violated. This is known to be an NP
hard problem but has been partially tackled in [22], [13]. By
combining our optimized hierarchy with more flexible energy
sensitive routing schemes we believe that a fairly good solution
to maximizing network lifetime can be achieved.

APPENDIX

Proof of Theorem 3 We use techniques similar to those in
[23]. The following sequence of equalities capture the key
steps:

EY( IT5(M. 1) | = B§( [ (o€ T (0 L))de]  (6)
R2

Fig. 7. Energy consumption plot for the optimal scheme when o N

a = 0.5. The big and small dots represent sinks and compressors= Ez[/ 1(Bjz((z) N2 = 1)1(0f;, (0,2) N 11} = 0)dz]

respectively. R2 e

| | o i =L PUBI(@) 01Tz = DP(O (0,2) 1L = 0)d (8)
under various aggregation schemes. In particular this will R?

reflect uneven energy burden throughout the network. Fig.7_ / e—mhalel? A (o) al? gy _ T )
exhibits a rough estimate for overall energy burden per unit R2 Fla)A + A’
transmission time assuming the sensor density is quite hig .(6) is straightforward, since the area of a cell is the

and traffic is routed along straight lines. The figure Clearli)ﬁtegral of the indicator function of the region. Eq.(7) follows

,ShOWS the high energy burden 'around the aggregation pOir%éobserving that locatiorr will belong to the cell if two
I.e. compressors or sinks, and imbalance of such burdens. &, jitions are met. First there must be no additional sinks

mentioned in the introduction, such imbalances may quick% addition to the one at the origin) within bal, () of
exhaust the energy reserves of some nodes causing the Ngk || centered ar. Second there must be no compressors
work to_eventually become dlsconnected_ or no_t provide ”Q\ﬁthin the Cartesian ova,,(0, z), otherwiser would belong
appropriate coverage. One way to alleviate this problem 45 1o cell associated with that compressor rather than that
to periodically update the positions of the compressors, g resnonding to the sink at the origin. This second condition
[14], yet this will not resolve imbalances around sink nodesyq 4 pe clear given our definition of the Cartesian oval and
Another way to alleviate this problem is to allow more erX|bI%ur cost function. These two requirements are shown in Fig.
congestion or energy sensitive routing towards aggregatign Eq.(8) uses the fact that the Palm probabilR§ for a
nodes [21]. We ma.inly discussed th_e optimal rate allqcati%isson processl, is simply that of the stationary Poisson
and the optimal hierarchical organization schemes in this,esq with same intensity but with an additional point at the
paper, and dew_smg load balancmg strategies combined W&Hgin - Slivnyak’s Theorem [24], [20]. In addition on Eq.(8)
these schemes is part of our ongoing study. we use the fact thdfl; is independent ofl,. Eq.(9) explicitly
replaces the void probabilities in Eq.(8). Recall that for a
VI. CONCLUSION Poisson procesH with intensity A\ and set4, the probability
Energy consumption will be a critical operational issue farf no points arising ind is simply P(IT N A = () = =4l
wireless sensor networks. In this paper we first show how #dso the area of a Cartesian ov@lj (0, z) in the special case
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where 3 = |z| can be computed explicitly and is given bycompressors as follows.

OF, (O x)| = |z|2f(a) where f(«) is given by (2). The
desired result Eq.(9) follows by direct integration. Z Z (€75 8%)1(Bysy (0) N 1Lz = 0)
sk €z c; €I

X1(Ofe;,51) (55, 0) NIy = D)1 (d(cj, sx) < [sk])]

[ |
= Z Z (¢j,86)1 B‘é”(O)ﬂHQ:@)
Proof of Theorem 4 By Neveu's exchange formula [18] we snelly cyell,
have that A X1(O5 ) (55,0) N Ty = 0)1(d(cy. 1) < |si])]
B > eu(r;, I, M) = iEg[eU(o,nl,nz)] (15)
STanVo(Te) = e [ BYY d(es (B (o) N1l = 0)
whereey (0,113, I1;) denotes the energy cost for typical sensor R? c; €1
at the origin. This energy cost depends on whether our sensor x1(Og(¢; 2 (2, 0) NIL; = 0)1(d(cj, 2) < |z])]dx
chooses to send directly to the sink or through a compressor. (16)
We shall consider these cases separately. In order to send \ .
directly to a sinks, € I, it must be the case that, is = /\2/267 PR d(cj, )
the closest to the origin, i.eBy,,(0) NII; = () and there is & ¢jelly
no eligible compressor in the Cartesian o4} (sx,0), i.e., x1(Oge, 2 (2, 0) NI = 0)1(d(cj, ) < |z)]dx
Of, | (sk,0)NII; = . Indeed any compressor within this oval (17)
Would offer a cost which is less thgm;| and thus preclude arlzP=A]08 . (@,0)]
direct connection to the sink,. We can compute the energy = 122 /Rz /A d(y, x)e o) dydx
cost associated with this first case as follows: N (18)
B D Istl1(B1o(0) 1T = D)L(Of, (5. 0) N IL = O] whereA, = {y € B | ale| < d(y,x) < |af} = O% (x,0).
sk€llz Eq.(15) follows by the independence &f, and IIy,Il,.
= E Z |5k [1(Bys,(0) NIz = 0) Eq.(16) follows by the the refined Campbell's Theorem [20],
sk €l In Eg.(17) we have explicitly computed the void probability
x1(0f, (s, 0) N 111 = 0)] (10) for the event associated witli; and used the independence
of IT; andIls. Finally in Eqg.(18) we have applied Campbell’s
= )\2/ |z[P3 (Bz(—2) N1y = 0) Theorem once more and explicitly computed the void proba-
_ bility of the remaining event. Note that for a sensor at position
(Ofy (=2, 0) 1L = D)da (11) 0 and sink at locationz, the energy cost functior(y, z)
— )\2/ |x‘642m\ —A1]Of (=2.0)] g (12) associated with using an intervening compregsaust satisfy
R alz| < d(y,z) < |z| hence the range of integration i,.
— 2m) / 12— Qam i f(@)r? g, (13) This comple_tes the proof of (4). The right hand side of Eq.(18)
0 can be rewritten as
_ nl(3/2) ) e
T et A f()i2 14 A /R e {/A d(y, z)e 1% ’0)'dy} dz. (19)

Eq.(10) follows by the independence f; Il and Ilo. Now let o = d(y,z) and note that the inner integration in
Eq.(11) follows by the refined Campbell's Theorem [20]. "(19) depends only on, sincez constant anind( o (m 0)| =
Eq.(12) we have explicitly replaced the void probabilities f0|0a(f 0). This permits a change of vanableéj and rewriting

the associated events. Eq.(13) corresponds to a changeydf o integral in (19) as follows —see [17] for more details.
variables, and finally Eq.(14) is an explicit computation of

the Integl’a| )\1>\2/ 67)\27[_‘:”2 /Im uei/\l‘og(z’o)‘ 8|Oﬁ(f£, O)|dud1'
The second case is more complex. In this case the sensor R? a ou

at the origin chooses to transmit to a compressor, say _ / S {f\z|e”1f(“)‘””‘2 + afa]
which then relays the data to the sisk. Note under the R2
proposed hierarchy the sink must be the closest to the sensor, || .
+/ “MIOTE 0 gy b da
||

||

S0 By, (0) NI, = §. Note that in this case the energy (20)
cost will be |¢;| + a|c; — si| and the compressor leading to

the minimum energy cost is selected. Thus it must be tiNow we use the following fact to bound the integration within
case thatOl(z ale; — sk ((8%,0) N IIy = 0 i.e., there is no the bracket of the right hand side of Eq. (20).
alternative compressor that can achieve a lower cost. Also _ _ o
one must ensure that;| + alc; — sy < |si| otherwise the Fact 1: The area of a Cz_irte5|an ovaD%(z,0), when
sensor would minimize its energy cost by going directly to thl?l < v < |z/ and0 < a <1, is lower bounded by

sink. For simplicity letd(c;, sx) = |¢;| + alc; — si|. We can fla)

(6%
compute cost incurred by sensors that choose to relay through |03 (2,0)] 2 (1—a)?

(u— alz])?
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with f(«) as given by (2). The bound is tight far= 0.

Thu

(20)

Gu

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]
[20]

[11]

[12]

[13]

[14]

[15]

s (20) can be bounded as follows:

< )\2/ e—)xzwlx\z{_‘x|€—)\1f(a)\:c\2
RQ

|| f(a) 2
- u—a|zx
+a|x\+/ e Mtz el D g 4 gy
«

||

1-a Ao (3/2)

(16]

(17]

(18]

(29]

- & ) { /\27‘&'F(3/2)
ey (Aom + A1 f())3/2

avg. cost when the typical sensor is in a sink cell

2V A2 - 22 + Mfla)/m em 4+ Aif(a))3/?

This gives the desired upper bousd; as follows.

[20]

(21]

(22]

+/\1)\2/ / d(y7x)e—>\27f$2—>\1|O§(y,z)(ar,0)|dydm} 23]
r2 JA,

avg. cost when the typical sensor is in a compressor cell

& « n 11—«
A2 | 2VA2 0 2/ ha + M f(a)/n

=Gy.
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