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Abstract— In this paper we study how to reduce energy
consumption in large-scale sensor networks which systematically
sample a spatio-temporal field. We begin by formulating a
distributed compression problem subject to aggregation (energy)
costs to a single sink. We show that the optimal solution
is greedy and based on ordering sensors according to their
aggregation costs– typically related to proximity– and, perhaps
surprisingly, it is independent of the distribution of data sources.
Next we consider a simplified hierarchical model for a sensor
network including multiple sinks, compressors/aggregation nodes
and sensors. Using a reasonable metric for energy cost, we
show that the optimal organization of devices is associated
with a Johnson-Mehl tessellation induced by their locations.
Drawing on techniques from stochastic geometry, we analyze
the energy savings that optimal hierarchies provide relative
to previously proposed organizations based on proximity, i.e.,
associated Voronoi tessellations. Our analysis and simulations
show that an optimal organization of aggregation/compression
can yield 8-28% energy savings depending on the compression
ratio.

Index Terms— Sensor networks, distributed data compression,
data aggregation, stochastic geometry

I. I NTRODUCTION

A N emerging vision for the future is that of a physical
(or virtual) world embedded with networked sensors

and actuators. The interweaving of local sensing/actuation,
communication, and computation with decision-making and
control has broad applicability, including: transportation, envi-
ronmental monitoring/oversight, structural monitoring, health
care, and national security. Progress is being made toward
increasing the diversity of available sensors, while new tech-
nologies permit the flexible deployment of small, inexpensive
devices operating on limited battery power and which are
interconnected via wireless links [1], [2], [3], [4]. In this paper
we consider distributed compression and aggregation schemes
for large scale sensor networks gathering information on a
spatio-temporal field. A key challenge for such applications
lies in devising system architectures and protocols to realize
the required sensing and communication tasks subject to hard
system constraints, in particular, energy.

The focus of this paper is on achieving energy efficiency
in two ways. First, by simply reducing the traffic transported
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by the network, e.g., through distributed source coding[5],
[6], [7] and/or data aggregation/header compression[8], [9].
Second, by making the transport of traffic on a sensor network
energy efficient, e.g., through energy-aware routing[10], [11]
and/or distributed medium access control[12]. In this paper we
address the following questions:

1) How to optimally arrange distributed compression sub-
ject to aggregation costs to asinglesink?

2) How to optimally arrange hierarchical architectures for
aggregation/compression in large-scale sensor networks
including multiple sinks?

Our aim is to minimizeoverall aggregation costs, i.e., energy
expenditures, associated with gathering sensor information. In
practice the spatial distribution of such expenditures may be
critical. Indeed if nodes do not have renewable sources of
energy, their batteries may become quickly depleted. Thus, as
in [13], it also makes sense to address the above questions
with a view at maximizing the network’s lifetime, rather than
minimizing the overall energy expenditure. In the sequel we
will argue that the two cost functions are not ‘orthogonal’ and
solutions minimizing overall energy consumption can be used
as a good starting point towards maximizing network lifetime.

There has been much related work in this area. In partic-
ular we will draw on a substantial body of work studying
the scaling and possible implementation of distributed com-
pression mechanisms for sensor networks, e.g., see [5], [6],
[7]. Our main contribution to this literature is to explicitly
introduce aggregation costs in the distributed compression
problem. The work of [14] is also closely related to ours.
They propose a particular organization, based on proximity,
of sensors and cluster-heads leading to a Voronoi tessellation
of the sensing field. Their goal is to optimize the size of
clusters so that the overall energy consumption of the network
is minimized. By contrast, in this paper we attempt to devise
an optimal hierarchical organization of sensors, aggregation
points/compressors, and sinks, to minimize the cost of gath-
ering sensor data.

The organization and main contributions of this paper can
be summarized as follows. In Section II we formulate and
solve an optimal distributed compression problem subject to
aggregation, e.g., energy, costs to a single sink. In Section III
and Section IV we propose a model for a large scale sensor
network including multiple sinks, compression/aggregation
devices and sensors, and determine the hierarchical organi-
zation resulting in a minimum overall energy consumption.
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Fig. 1. An illustration of the sensor reporting.

Leveraging previous work on stochastic geometry, we estimate
and compare the costs associated with various organizational
structures including those based on simply relaying traffic
to the closest compressor or sink. These provide insights on
where these structures are likely to be effective. In Section V
we provide numerical and simulation results for the energy
savings obtained by using the optimal hierarchical scheme
and discuss some design issues associated with the large-scale
sensor networks. We conclude the paper in Section VI.

II. OPTIMAL DISTRIBUTED DATA COMPRESSION SUBJECT

TO AGGREGATION COSTS TO A SINGLE SINK

We begin by examining how to best realize distributed
data compression subject to aggregation costs to a single
sink. As illustrated in Fig.1, we consider a set of sensors
U = {1, 2, · · · , n} at locations~x = (xi, i ∈ U) within a
coverage areaA ⊂ R2 and sink placed at the origin. We
model information obtained by these sensors as a random
vector ~D = (Di, i ∈ U), and suppose the sink coordinates
and aggregates the information from the sensors. Since sensors
are located at different positions, they may incur different
aggregation costs in forwarding their data to the sink. We
use a vector~w = (wi, i ∈ U) to model these costs, where
wi is the cost of moving a unit of data from sensori to the
sink. For example, the aggregation costs can be modelled by
wi = |xi|γ , i.e., a function of the distance from sensori to the
sink. Thus forγ = 1 the cost for sensori is proportional to its
distance (a rough estimate for the number of hops) to the sink.
Also if the sensor communicates directly with the sink then
for γ ∈ (2, 4) this cost might capture the increased transmit
power levels required to overcome path loss on a wireless link.

The information collected by the sensors is likely to be
correlated and thus it is possible to jointly compress the data
they generate. Let~r = (ri, i ∈ U) denote the number of
bits per reading each sensor would generate. Then by Slepian-
Wolf’s Theorem, the sum of the rates for any subset of sensors
S ⊂ U is lower bounded by conditional entropy,H(DS |DSc),
whereDS = (Di, i ∈ S) and DSc = (Di, i ∈ U \ S) [15].
Our objective is to jointly compress the sensed data while
minimizing the overall aggregation cost. We can formally state
the problem as follows.

Problem 1: For a set of devicesU sensing an information
vector ~D, and an associated aggregation cost vector~w deter-

mine the rate vector~r∗ that minimizes the overall aggregation
cost subject to joint data compression constraints, i.e.,

min
~r

{ n∑

i=1

wi · ri |
∑

i∈S

ri ≥ H(DS |DSc), ∀S ⊆ U
}

.

Note that the feasible rate region is defined by2n − 1
inequality constraints. Fortunately, one can show that the
feasible rate region has acontra-polymatroidstructure leading
to the following greedy solution.

Theorem 1:Supposew1 ≥ w2 ≥ · · · ≥ wn, then the
optimal solution to Problem 1 is given by

r∗1 = H(D1|D2, D3, · · · , Dn),
r∗2 = H(D2|D3, D4, · · · , Dn), · · · , r∗n = H(Dn).
A contra-polymatroid is a polyhedron defined as follows:

B(f) =
{
~x | ~x ∈ Rn

+,
∑

i∈S

xi ≥ f(S), ∀S ⊆ U
}

,

wheref : 2U → R+ is called the rank function satisfying

(1) f(∅) = 0;
(2) f(S) ≤ f(T ) ∀S ⊂ T ; (monotonicity)
(3) f(S) + f(T ) ≤ f(S ∪ T ) + f(S ∩ T )

(super-modularity).

For such constraint sets the following result has been proved,
see e.g., [16].

Lemma 1:A solution~r∗ to the following optimization prob-
lem where~w ∈ Rn

+,

min
~r

{ n∑

i=1

wi · ri| ~r ∈ B(f)
}

,

is given by r∗π(1) = f({π(1)}) and r∗π(i) =
f({π(1), π(2), · · · , π(i)}) − f({π(1), π(2) · · ·π(i − 1)}),
i = 2, 3, · · · , n, where π denotes a permutation of
(1, 2, · · · , n) such thatwπ(1) ≥ wπ(2) ≥ · · · ≥ wπ(n).
The key step to proving Theorem 1 is showing that the
conditional entropy functionf(S) = H(DS |DSc) is a rank
function so the constraints in Problem 1 define a contra-
polymatroid. The result then follows immediately by Lemma
1. The derivation of this result follows by a fairly straight-
forward argument–we refer the readers to [17] for a detailed
proof.

Theorem 1 implies that a data compression strategy that
minimizes the aggregation cost can be obtained by a simple
ordering of the sources based on their aggregation cost. Sur-
prisingly, the optimal solution is independent of the underlying
correlation structure of the data sources or absolute values for
these costs. Also note that Slepian-Wolf’s result generalizes
to ergodic data sources[15], so Thm.1 easily extends to data
sources which are spatio-temporally correlated, by replacing
conditional entropies with conditional entropyrates.

Let us briefly evaluate the performance gains that might be
achieved under optimal compression. Suppose we deploy 10
sensors at a set of randomly selected locations~x in a square
area A = [−1, 1]2, with a sink located at the origin. We
shall model the sensed data as a stationary Gaussian field with
zero mean and a spatial covarianceR(xi, xj) = 10e−θ|xi−xj |
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Fig. 2. The figure exhibits the percent energy savings as a function
of the correlationθ among data sources, and percent energy savings
as a function ofγ whenθ = 0.1.

whereθ models the rate of decay in the correlation between
sensed dataDi andDj , as a function of the distance between
sensor locationsxi andxj . This implies a correlation structure
for the sensor data~D that is dependent on the locations
of the sensors. To estimate the rates generated by sensors
we suppose they are equipped with a 4-bit A/D converter,
and thus approximatelyH(Di|Di+1, Di+2, · · ·Dn) = 4 +
h(Di|Di+1, Di+2, · · ·Dn) whereh(·|·) is the conditional dif-
ferential entropy of the Gaussian source.

We will compare thepercentage reductionin the aggre-
gation cost for our optimal scheme versus a baseline which
achieves optimal compression but allocates bits based on a
random ordering of sensors. Fig.2 shows the case where
the weight for sensori depends on its distance to the sink
|xi|. As expected, the benefits decrease as correlation across
sensed data decreases. This is intuitive since eventually with
no correlation, i.e., independence, there will be no benefit
for optimal distributed compression. Fig.2 also shows the
performance improvement when the weights are given by|xi|γ
andγ ∈ [1, 3]. As might be expected, larger exponentsγ lead
to higher differences in the aggregation costs among sensors
and thus higher the performance gains.

III. O PTIMAL HIERARCHICAL STRUCTURES FOR

COMPRESSION AND AGGREGATION TO MULTIPLE SINKS

The scheme discussed in the previous section will not scale
as the number sensors grows. Specifically, if the overall data
produced increases, it will eventually overwhelm the sink. A
more reasonable scenario for a large scale sensor network, is
one with a three level hierarchy, including: at the top multiple
sinks, e.g. wired nodes; at an intermediate level, a class (sen-
sor) nodes that serve as intermediate traffic aggregators and/or
in-network compressors; and at the bottom a collection of
spatially distributed sensors. Each intermediate node collects
data from an associated set of sensors and forwards it to a sink.
Thus such nodes may minimize the energy costs to gather data

using optimal distributed compression. In addition, in practice,
such nodes might play a key role in further compressing data
sent to the sinks through aggregation/header compression. We
will focus on this second role in this section. Our objective is
to study how to best arrange such hierarchies so as to minimize
the overall energy costs. Due to the complexity of and spatial
character of problem, we will use the methodology proposed
in [18]. The idea is to use crude stochastic geometric models
to capture the salient features of the system.

A. Hierarchical organization and energy models

We shall assume the sensor, compressor and sink loca-
tions are determined by homogeneous Poisson point processes
Π0, Π1 and Π2, with intensitiesλ0, λ1 and λ2 respectively.
We also assume that sinks may serve as compressors, i.e.,
it may gather data directly from sensors if necessary. We
use the location of a node as an index for the device itself.
Thus xi ∈ Π0 denotes the sensor at locationxi, cj ∈ Π1 a
compressor at locationcj andsk ∈ Π2 a sink at locationsk.
Our model for a hierarchical organization of these nodes is
based on two mappings. Letc : Π0 → Π1 ∪Π2 be a mapping
associating a sensorxi with a compressor or sinkc(xi) and
s : Π1 ∪Π2 → Π2 be a mapping associating a compressor or
sink yi with a sink s(yi). If yi is a sink it is associated with
itself. In the sequel we will consider various organizational
structures, i.e., various choices for the functionsc ands.

Next we propose a rough model for the energy costs
associated with aggregation. We will assume that sensors and
compressors communicate over an ad hoc network of wireless
links, so packets will be relayed over multiple hops toward
their destination. Thus the overall aggregation cost in the
system will be proportional to the number of packets that
need to be relayed. The energy cost per packet will depend
on the overheads to access the channel for transmission, and
energy expended during transmission. The latter would in turn
depend on the size of the packet and the distances involved.
We shall assume that packets have roughly the same size. Also
assuming the devices are distributed in a fairly homogenous
manner it is reasonable to assume the energy cost per packet
relayed in the network is roughly the same, and the number of
hops required to travel between two locations is proportional to
distance between them. Suppose then that sensorxi generates
dxi packets/sec to its compressorcj = c(xi). The total traffic
received bycj would be

∑

{xi:c(xi)=cj}
dxi packets/sec,

and the total energy expended in the network to carry this
traffic is roughly proportional to

∑

{xi:c(xi)=cj}
dxi |xi − cj | packets-hops/sec.

Recall that each compressorcj aggregates incoming data
and possibly further compresses it prior to forwarding it to the
sink s(cj). Aggregation may make use of context dependent
information to compress the data it forwards to the sink. For
example, if sensors are fixed a sink will eventually know which
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sensors are assocaited with a compressor, and it in turn need
not forward location information for each data sample. We
will assume thatcj forwards packets at a rate

αcj

∑

{xi:c(xi)=cj}
dxi

packets/sec

to its associated sinksk = s(cj), incurring an additional
energy cost which is proportional to

αcj

∑

{xi:c(xi)=cj}
dxi
|cj − sk| packets-hops/sec

The parameterαcj ∈ [0, 1] captures the gross benefit of
aggregation and compression resulting fromcj ’s processing
and forwarding of sensor data.

Our goal is to capture the salient features of such a hierar-
chy, so it makes sense to assume that each sensor nodes offer
roughly the same traffic load, i.e., without loss of generality we
let dxi = 1 for all xi ∈ Π0, possibly representing an average
load per sensor to its aggregation point after distributed
compression. In addition, assuming that the set of sensors
associated with a given compressor node is sufficiently large,
and variations inαcj will not be significant, we will assume
that all compressor/aggregating nodes are equally effective,
i.e., αcj = α for all compressor nodescj ∈ Π1. With these
two assumptions we obtain an additive energy cost model,
with a cost per sensor,e(xi), which is proportional to

e(xi) = |xi − c(xi)|+ α|c(xi)− s(c(xi))|. (1)

Note that, depending on the relative distances, in practice
it may indeed be more efficient for nodes to communicate
directly with aggreagation points or sinks. Our model can
be generalized to capture the direct communication among
sensors, compressors and sinks. In this case, an energy cost of
eγ(xi) = |xi − c(xi)|γ + α|c(xi)− s(c(xi))|γ , could be used
whereγ represents the path loss exponent of the environment.
We refer the reader to [17] for results and analysis for of this
generalization.

B. Optimal sensor hierarchies and spatial tessellations

Our objective is, given our three point processes and a
fixed gross compression ratioα, to determine the hierarchical
organization, i.e. the functionsc(·) and s(·), that minimize
the overall energy cost in this network. Prior to considering
optimal hierarchies let us consider a natural choice. It should
be clear that from the perspective of minimizing our cost
metric, each compressor should relay packets to the closest
sink. Similarly one might think it reasonable to assume each
sensor sends its traffic to the closest compressor or, if it
is closer, directly to a sink. As discussed in [18] such a
hierarchical organization is induced by theVoronoi tessellation
generated by the locations of the sinks and compressors. A
Voronoi tessellation with respect to a set of pointsΠ can be
defined as follows.

Definition 1: The Voronoi tessellation associated withΠ,
denotedV(Π) is a collection of cellsVyi(Π) for yi ∈ Π such
that

Vyi(Π) = {z ∈ R2 | |yi − z| < |yj − z|, ∀yj ∈ Π},

i.e., all points in the plane which are closer toyi than to any
other point inΠ.

Let V(Π1 ∪Π2) denote the Voronoi tessellation induced by
the union of compressors and sinksΠ1 ∪Π2 and let us define
a hierarchical organization as follows. LetcV : Π0 → Π1∪Π2

be such that for eachxi ∈ Π0,

cV (xi) = yj , iff xi ∈ V yj
(Π1 ∪Π2).

Here V yj
denotes the closure of the setVyi

. Mathematically
the probability that a sensor will fall on the boundary of sets
Vyi vanishes. However, if a sensor is observed to be located on
the boundary due to the finite granularity in the positions of
nodes, such ties must be broken arbitrarily. LetV(Π2) denote
the Voronoi tessellation induced by the sinksΠ2, and define a
mappingsV : Π1∪Π2 → Π2, such that for eachyj ∈ Π1∪Π2,

sV (yj) = sk, iff yj ∈ V sk
(Π2).

The pair cV and sV capture a simple hierarchical orga-
nization for sensors, compressors and sinks based purely on
proximity rather than achieving our goal, i.e., minimizing the
energy cost of aggregation. In particular a sensor may connect
to the closest compressor even if the energy cost would be
reduced if it connected to another compressor which is closer
to its eventual sink and thus results in an energy savings.
Below we define the tessellationT α(Π1, Π2) that induces an
optimal organization for a given overall compression ratioα.

Definition 2: The tessellationT α(Π1,Π2) associated with
two sets of pointsΠ1 andΠ2 and parameterα, consists of a
collection of cellsTα

yi
(Π1, Π2) for yi ∈ Π1 ∪Π2 such that

Tα
yj

(Π1, Π2) = {z ∈ R2 | |z − yj |+ α|yj − sV (yj)|
< |z − yl|+ α|yl − sV (yl)|, ∀yl ∈ Π1 ∪Π2}.

We refer toTα
yj

(Π1, Π2) as the cell with nucleusyi.

The next theorem shows that this tessellation induces an
organization which minimizes the energy cost for each sensor.

Theorem 2: Under the energy cost model (1), the optimal
assignment of compressorscj ∈ Π1 to sinks iss∗(cj) =
sV (cj) ∈ Π2, i.e., the closest sink tocj . The optimal
assignment of sensorsxi ∈ Π0 to compressors or sinks
is c∗(xi) such thatxi ∈ Tα

c∗(xi)
(Π1,Π2) ∈ T α(Π1,Π2),

i.e., the compressor/sink which is the nucleus for the cell in
T α(Π1, Π2) containingxi.

Proof: To prove that this hierarchy has minimal cost
consider a sensorxi ∈ Tα

yj
(Π1, Π2), so c∗(xi) = yj . Suppose

xi is assigned to some other compressor or sinkyl and then
some sinksk. The energy cost for such an assignment would
be

e(xi) = |xi − yl|+ α|yl − sk|
≥ |xi − yl|+ α|yl − s∗(yl)|
≥ |xi − yj |+ α|yj − s∗(yj)|
= |xi − c∗(xi)|+ α|c∗(xi)− s∗(c∗(xi))|,

where the first inequality follows from the definition ofs∗ and
the second inequality is a natural consequence of the definition
of the cells in the tessellationT α(Π1,Π2).
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Fig. 3. The figure on the above shows the optimal Johnson-Mehl
tessellationT α(Π1, Π2) for compression ratioα = 0.5, and the
figure on the below shows the Voronoi tessellationV(Π1 ∪Π2). The
small dots represent compressors inΠ1 and big dots represent sinks
in Π2. We have superposed the Voronoi tessellationV(Π2) induced
by the sinks and drawn the boundaries with dashed straight lines. The
organization of sensors to compressors or sinks, and compressors to
sinks should be clear based on its location with respect to the two
superposed tessellations.

The tessellationT α(Π1, Π2) introduced earlier is a partic-
ular case of a Johnson-Mehl tessellation [19]. Let us briefly
consider how this comes about by contrasting it with a Voronoi
tessellation. One can visualize the Voronoi tessellation as in-
duced by a set of nuclei which grow grains isotropically at unit
speed until they come into contact with another nuclei’s grain.
These contact points become the boundaries of the cells of the
tessellation. A Johnson-Mehl tessellation adds an additional
degree of freedom. It allows the nuclei to start growing their
grains at different times. The tessellationT α(Π1, Π2) results
if all sinks sk ∈ Π2 start growing grains together isotropically
at unit speed. Subsequently each compressorcj ∈ Π1 starts
growing a grain at time proportional toα|cj − s∗(cj)| which
depends on its distance from the closest sink andα. The
resulting boundaries can be shown to be hyperbolic. In this
tessellation, the cells associated with sinks will tend to be large
relative to others, since they start growing earlier. For a formal
proof of this argument, we refer the readers to [17]. Examples
of a Voronoi tessellation and an energy optimal Johnson-Mehl
tessellation forα = 0.5 are shown in Figure 3.

IV. A NALYTICAL RESULTS

In this section we will compare various organizational
hierarchies in terms of their expected energy costs.

A. Hierarchy based on Voronoi tessellation

Let us first consider the hierarchy based on Voronoi tessella-
tion whereby each sensor sends data to its closest compressor
or sink node, and compressor nodes relay a fractionα of the
traffic they receive to the closest sink. Following [18] we can
mathematically define an expected energy costGV under such
an arrangement as

GV = E0
2


 ∑

cj∈Π1∩V0(Π2)

{α|cj |Ncj

+
∑

xi∈Π0∩Vcj
(Π1∪Π2)

|xi − ci|}+
∑

xi∈Π0∩V0(Π1∪Π2)

|xi|

 ,

where we have used the following conventions:E0
k denotes

the expectation with respect to the Palm distributionP0
k of the

point processΠk, see [20]; andNcj
is the number of sensors,

i.e., points inΠ0 which are associated with compressorcj ,
that is in the cellVcj (Π1).

ThusGV corresponds to the energy cost associated with a
typical sink cellV0(Π2). The first summand consists of two
terms: the first corresponds to the energy costs in forwarding
compressed data from compressors to sinks, while the second
corresponds to the energy cost of forwarding data from sensors
to compressors. The second summand in the above expression
corresponds to energy costs of sensors that directly send data
to the sink. One can use the results in [18] to evaluate the
expected costGV giving1:

GV =
λ0

2λ2

√
λ1 + λ2

+
αλ0

2λ
3/2
2

− αλ0

2(λ1
4 + λ2)3/2

+
∫ π

2

0

12π3/2λ0λ1α(π − γ) sin γ cos2 γdγ

(π(γ1 + 2γ2) + γ2 sin(2γ) + 2γ2(π − γ) cos(2γ))5/2
.

Note that the same results can be applied to evaluate the
cost of an aggregation hierarchy with no compressor nodes at
all, i.e., sensors merely send uncompressed data to the closest
sink. Applying the results in [18] one finds the energy cost
GS for a typical sink cell is given by

GS =
λ0

λ2
· 1
2
√

λ2

.

This can be interpreted as follows: the area of a typical sink
cell is 1/λ2 and so the average number of sensors in that cell
is expected to beλ0/λ2. Moreover one can show that1/2

√
λ2

corresponds to the mean distance from a sensor to its closest
sink. Thus the average cost should be the product of these two
terms.

As will be seen in the sequel, it may be the case thatGV >
GS for someα. Specifically whenα is close to 1 it may be
more expensive to route to a compressor which is close by

1We have corrected an error in the derivations of [18] to get this expression
for GV .
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rather than go directly to a sink. Thus a greedy aggregation
strategy based purely on proximity may be worse than not
using one at all.

B. Optimal hierarchy based on Johnson-Mehl tessellation

Next we evaluate the energy costGT for the optimal
hierarchy introduced in the previous section. It is given by

GT = E0
2


 ∑

cj∈Π1∩V0(Π2)

{α|cj |Nα
cj

+
∑

xi∈Π0∩T α
cj

(Π1,Π2)

|xi − cj |}+
∑

xi∈Π0∩T α
0 (Π1,Π2)

|xi|


 ,

whereNα
cj

denotes the number of sensors, i.e., points inΠ0,
which are associated with compressorcj , and are within the
cell Tα

cj
(Π1,Π2). Here GT corresponds to the energy cost

associated with a typical cellV0(Π2) in the higher level
Voronoi tessellation induced by sinks.

As an intermediate step toward estimating the energy cost,
let us consider the area of a typicalsink cell in the Johnson-
Mehl tessellationT α(Π1,Π2). Recall that cells associated
with sinks will tend to be larger than others since they start
growing earlier, see Fig. 3. The following theorem, proved in
the appendix, gives an explicit formula for the area of a typical
sink.

Theorem 3: Consider two point processesΠ1 (compres-
sors) andΠ2 (sinks) with densitiesλ1 and λ2 respectively.
The expected area of a typical sink cell in the tessellation
T α(Π1, Π2) is given by

E0
2[ |Tα

0 (Π1, Π2)| ] =
π

f(α)λ1 + πλ2

where |T | denotes the area of a setT and f(α) is defined
as follows. We letOα

β (x1, x2) denote the Cartesian oval with
foci at x1,x2 ∈ R2, given by

Oα
β (x1, x2) = {y ∈ R2 | α|y − x1|+ |y − x2| ≤ β},

and letf(α) be the area ofOα
1 (0, x) when|x| = 1. Thenf(α)

is given by

f(α) =
4

(1− α2)2

{
(
1
2

+ α2)(
π

2
− sin−1(α))

+
sin(2 sin−1(α))

4
− 2α cos(sin−1(α))

}
. (2)

Note that the Cartesian ovalOα
β (0, x) can be interpreted

as the set of possible compressor locations with respect to
a sink at the origin and a sensor atx that would result in
a lower energy cost thanβ if used as a relay point, see
e.g., Fig. 4. One can show thatf(α) is a monotonically
decreasing function inα ∈ [0, 1] wheref(0) = π, f(1) = 0.
Thus whenα = 1, i.e., there is no compression gain, the
area of a typical sink cell becomes1λ2

. This is the average
area of a typical cell for a Voronoi tessellation with density
λ2, thus connecting to the nearest sink must be optimal. At
the other extreme ifα = 0, and thus the data which will
be relayed from compressors to sinks is negligible, then the

−0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) 

(b) 

Sensor Sink 

Fig. 4. The figure shows the ballB|x|(x) and Cartesian ovalOα
|x|(0, x)

associated with a potential (sensor) location atx = (1, 0) and sink at the
origin. In order for the sensor at (1,0) to be associated with the sink at the
origin, there must be no compressors in the Cartesian oval (a) and no other
sinks in region in the ball (b).

optimal sink cell’s area becomes 1
λ1+λ2

which is the average
area of a typical cell of a Voronoi tessellation with density
λ1 +λ2. Clearly connecting to the nearest sink or compressor
is the optimal policy whenα = 0. Thus at the two extremes
our Johnson-Mehl tessellation reduces to one of two Voronoi
cases. However whenα ∈ (0, 1), we can expect to get cells
with hyperbolic faces associated with an optimal hierarchy.

Unfortunately sinceT α(Π1, Π2) depends in an inhomo-
geneous manner on the two point processes, estimating the
energy cost is quite challenging. As such, we derive an
upper boundGU for the optimal energy costGT . To do so,
consider yet another alternative hierarchical organization for
the sensor network. In this hierarchy the data associated with
a sensorxi is necessarily routedto its closest sinksV (xi).
This data may however be routed either directly to the sink or
via a compressor depending on which option minimizes the
contribution to the energy cost of the system. LettingcU (xi)
denote the energy optimal routing choice for sensorxi, i.e., to
a sink or compressor, the associated energy cost is given by

e(xi) = |xi − cU (xi)|+ α|cU (xi)− sV (xi)|. (3)

Although this hierarchy is suboptimal it is quite close to the
optimal one. In particular sensors which are not close to the
boundary of the Voronoi cells associated with the point process
of sinks, are likely to contribute the same energy costs as in
the optimal hierarchy.

We can define the energy cost for a typical cellGU for this
new hierarchical arrangement as

GU = E0
2


 ∑

xj∈Π0∩V0(Π2)

eU (xi, Π1, Π2)


 .

Under this new organization only sensors withinV0(Π2) will
be associated with the origin, thus one can directly express
the energy cost of a typical cell as a sum over sensors in this
cell. However the cost per sensor depends on the locations of
compressor and sink nodesΠ1 andΠ2 – we introduceeU to
make this explicit.

The following theorem, proved in the appendix, gives an
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explicit upper bound for the energy cost achieved by the
optimal aggregation scheme.

Theorem 4: The energyGU is an upper bound for the
optimal costGT and is given by

GU =
λ0πΓ(3/2)

(λ2π + λ1f(α))3/2
+ λ0λ1

∫

R2
e−λ2π|x|2

∫

Oα
|x|(x,0)

(|y|+ α|y − x|)e−λ1|Oα
|y|+α|y−x|(x,0)|dydx(4)

where f(α) and Oα
β (x, 0) are as defined in Theorem 3.

Furthermore,GU is upper bounded bŷGU given by

ĜU =
λ0

λ2

{
α

2
√

λ2

+
1− α

2
√

λ2 + λeff

}
, (5)

whereλeff = f(α)
π λ1.

By Neveu exchange formula [18], one can interpret the
expression in the bracket of (5) as an average cost incurred
by a typical sensor. Observe that for perfect compression, i.e.,
α = 0, we have thatf(0) = π so this term reduces to 1

2
√

λ1+λ2
which corresponds to the typical cost of a sensor connecting
to the closest sink or compression. By contrast for the case
with no compression at all, i.e.,α = 1, this term reduces to

1
2
√

λ2
, the cost for a typical sensor to connect to its closest

sink. This clarifies the dependence of the energy cost on the
compression ratioα as we move among these two extremes.
Finally we note that through simulation we found thatĜU

gave an excellent approximation forGU –the error was less
than 1.4%, see [17] for more details.

V. NUMERICAL AND SIMULATION RESULTS

We numerically evaluated the energy costs for the vari-
ous schemes discussed in the previous section. NamelyGS

corresponds to the case where sensors send directly to the
sink without going through compressors,GV the case where
sensors send to a compressor or a sink, whichever is closer, and
then compressors send to sinks, andGU is our upper bound for
the optimal strategy. As seen at the top in Fig.5, the optimal
hierarchy (upper boundGU ) can outperform those based
on Voronoi tessellation, i.e.GS and GV . With a moderate
compression ratio, e.g.0.5 ≤ α ≤ 0.9, the percent energy
savings of the optimal scheme versus the Voronoi schemeGV

is 6%-26%. Also note that our closed-form approximationĜU

is a tight upper bound ofGU : the error is within 1.4% ofGU .
We have verified by simulation that the percent energy savings
is in fact roughly 8%-28%. However it is very close to the
simulated cost, where the error is within 2%. Details of the
simulation methodology and results can be found in [17].

Observe that asα increases the second schemeGV is
inferior to GS ; this is intuitive sinceGV is constrained to
connect to the closest compressor if there are no sinks which
are closer, thus requiring a “detour” even when no compression
gain is available. Note however, our optimal scheme always
performs better than the other two. In particular as soon
as the aggregation/compression nodes provide a reasonable
compression ratio it is able to significantly reduce the overall
energy cost of the network. The plot at the bottom of Fig.5
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Fig. 5. The graph at the top exhibits a numerical evaluation ofGS ,
GV and our upper boundsGU andĜU for the optimal hierarchy, as
a function ofα with λ0 = 1, λ1 = 0.0473 and λ2 = 0.0142. The
graph at the bottom exhibits energy savings, comparingGU to GS ,
as a function ofα andλ2/λ1.

shows the percent energy savings forGU versusGS , as a
function of α and λ2/λ1. Note the sensitivity of the savings
for the optimal scheme increases with the density of com-
pressor nodes. The intuition here is that for high densities of
compressors whenα changes, sensors will have more choices
for candidate compressor nodes leading to higher savings.

In Fig.6, we show the spatial distribution of the energy
contribution e(x) for possible sensor locations under the
optimal hierarchical arrangement. Bright regions indicate areas
where sensors incur a higher energy cost to the overall system,
and dark regions are the areas with less cost. We observe
that the energy contours vary in a smooth way. The reason is
that the optimal tessellation is constructed for each sensor to
achieve the minimal cost at its location, and the cost function is
a smooth function of the sensor positions inR2. By contrast, a
similar plot for the organization based on the Voronoi scheme
(omitted here) shows discontinuities at the cell boundaries
since sensors associate with closest compressors (or sinks)
rather than the minimum energy choices.

In practice it is of interest to examine thetraffic congestion
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Fig. 6. Energy contribution plot for the optimal scheme when
α = 0.5. The big and small dots represent sinks and compressors
respectively.

Fig. 7. Energy consumption plot for the optimal scheme when
α = 0.5. The big and small dots represent sinks and compressors
respectively.

under various aggregation schemes. In particular this will
reflect uneven energy burden throughout the network. Fig.7
exhibits a rough estimate for overall energy burden per unit
transmission time assuming the sensor density is quite high
and traffic is routed along straight lines. The figure clearly
shows the high energy burden around the aggregation points,
i.e. compressors or sinks, and imbalance of such burdens. As
mentioned in the introduction, such imbalances may quickly
exhaust the energy reserves of some nodes causing the net-
work to eventually become disconnected or not provide the
appropriate coverage. One way to alleviate this problem is
to periodically update the positions of the compressors, e.g.
[14], yet this will not resolve imbalances around sink nodes.
Another way to alleviate this problem is to allow more flexible
congestion or energy sensitive routing towards aggregation
nodes [21]. We mainly discussed the optimal rate allocation
and the optimal hierarchical organization schemes in this
paper, and devising load balancing strategies combined with
these schemes is part of our ongoing study.

VI. CONCLUSION

Energy consumption will be a critical operational issue for
wireless sensor networks. In this paper we first show how to

perform optimal distributed compression so as to minimize
aggregation (energy) costs to a sink. We then propose a
natural model for a large scale network including multiple
sinks, compressor/aggregation nodes, and sensors. We study
how to optimize this hierarchy so as to minimize the overall
energy consumption– the optimal hierarchy is shown to be
associated with a Johnson-Mehl tessellation induced by sinks
and compressor nodes. Using stochastic geometry we were
able to evaluate the average costs associated with such ar-
rangements and compare them with natural proximity based
organizations previously proposed. Our results suggest that
there are significant energy savings, 8-28 %, to be achieved by
optimizing compression and aggregation structures for sensor
networks. However, minimizing the overall energy cost is
but part of the picture. In practice, when sensors have non-
replenishable energy sources, the objective will be to maximize
the network lifetime, e.g., time until a sensor expires or a
coverage constraint is violated. This is known to be an NP
hard problem but has been partially tackled in [22], [13]. By
combining our optimized hierarchy with more flexible energy
sensitive routing schemes we believe that a fairly good solution
to maximizing network lifetime can be achieved.

APPENDIX

Proof of Theorem 3: We use techniques similar to those in
[23]. The following sequence of equalities capture the key
steps:

E0
2[ |Tα

0 (Π1, Π2)| ] = E0
2[

∫

R2
1(x ∈ Tα

0 (Π1, Π2))dx] (6)

= E0
2[

∫

R2
1(B|x|(x) ∩Π2 = 1)1(Oα

|x|(0, x) ∩Π1 = ∅)dx]

(7)

=
∫

R2
P(B|x|(x) ∩Π2 = ∅)P(Oα

|x|(0, x) ∩Π1 = ∅)dx (8)

=
∫

R2
e−πλ2|x|2e−λ1f(α)|x|2dx =

π

f(α)λ1 + πλ2
. (9)

Eq.(6) is straightforward, since the area of a cell is the
integral of the indicator function of the region. Eq.(7) follows
by observing that locationx will belong to the cell if two
conditions are met. First there must be no additional sinks
(in addition to the one at the origin) within ballB|x|(x) of
radius|x| centered atx. Second there must be no compressors
within the Cartesian ovalO|x|(0, x), otherwisex would belong
to the cell associated with that compressor rather than that
corresponding to the sink at the origin. This second condition
should be clear given our definition of the Cartesian oval and
our cost function. These two requirements are shown in Fig.
4. Eq.(8) uses the fact that the Palm probabilityP0

2 for a
Poisson processΠ2 is simply that of the stationary Poisson
process with same intensity but with an additional point at the
origin - Slivnyak’s Theorem [24], [20]. In addition on Eq.(8)
we use the fact thatΠ1 is independent ofΠ2. Eq.(9) explicitly
replaces the void probabilities in Eq.(8). Recall that for a
Poisson processΠ with intensityλ and setA, the probability
of no points arising inA is simply P(Π ∩ A = ∅) = e−λ|A|.
Also the area of a Cartesian ovalOα

β (0, x) in the special case
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where β = |x| can be computed explicitly and is given by
|Oα
|x|(0, x)| = |x|2f(α) where f(α) is given by (2). The

desired result Eq.(9) follows by direct integration.

Proof of Theorem 4: By Neveu’s exchange formula [18] we
have that

E0
2[

∑

xj∈Π0∩V0(Π2)

eU (xj , Π1,Π2)] =
λ0

λ2
E0

0[eU (0, Π1,Π2)]

whereeU (0, Π1, Π2) denotes the energy cost for typical sensor
at the origin. This energy cost depends on whether our sensor
chooses to send directly to the sink or through a compressor.
We shall consider these cases separately. In order to send
directly to a sinksk ∈ Π2 it must be the case thatsk is
the closest to the origin, i.e.,B|sk|(0) ∩ Π2 = ∅ and there is
no eligible compressor in the Cartesian ovalOα

|sk|(sk, 0), i.e.,
Oα
|sk|(sk, 0)∩Π1 = ∅. Indeed any compressor within this oval

would offer a cost which is less than|sk| and thus preclude
direct connection to the sinksk. We can compute the energy
cost associated with this first case as follows:

E0
0[

∑

sk∈Π2

|sk|1(B|sk|(0) ∩Π2 = ∅)1(Oα
|sk|(sk, 0) ∩Π1 = ∅)]

= E[
∑

sk∈Π2

|sk|1(B|sk|(0) ∩Π2 = ∅)

×1(Oα
|sk|(sk, 0) ∩Π1 = ∅)] (10)

= λ2

∫

R2
|x|P0

2(B|x|(−x) ∩Π2 = ∅)
×P(Oα

|x|(−x, 0) ∩Π1 = ∅)dx (11)

= λ2

∫

R2
|x|e−λ2π|x|2−λ1|Oα

|x|(−x,0)|dx (12)

= 2πλ2

∫ ∞

0

r2e−(λ2π+λ1f(α))r2
dr (13)

=
λ2πΓ(3/2)

(λ2π + λ1f(α))3/2
. (14)

Eq.(10) follows by the independence ofΠ1 Π2 and Π0.
Eq.(11) follows by the refined Campbell’s Theorem [20]. In
Eq.(12) we have explicitly replaced the void probabilities for
the associated events. Eq.(13) corresponds to a change of
variables, and finally Eq.(14) is an explicit computation of
the integral.

The second case is more complex. In this case the sensor
at the origin chooses to transmit to a compressor, saycj ,
which then relays the data to the sinksk. Note under the
proposed hierarchy the sink must be the closest to the sensor,
so B|sk|(0) ∩ Π2 = ∅. Note that in this case the energy
cost will be |cj | + α|cj − sk| and the compressor leading to
the minimum energy cost is selected. Thus it must be the
case thatOα

|cj |+α|cj−sk|(sk, 0) ∩ Π1 = ∅ i.e., there is no
alternative compressor that can achieve a lower cost. Also
one must ensure that|cj | + α|cj − sk| ≤ |sk| otherwise the
sensor would minimize its energy cost by going directly to the
sink. For simplicity letd(cj , sk) = |cj |+ α|cj − sk|. We can
compute cost incurred by sensors that choose to relay through

compressors as follows.

E0
0[

∑

sk∈Π2

∑

cj∈Π1

d(cj , sk)1(B|sk|(0) ∩Π2 = ∅)

×1(Oα
d(cj ,sk)(sk, 0) ∩Π1 = ∅)1(d(cj , sk) ≤ |sk|)]

= E[
∑

sk∈Π2

∑

cj∈Π1

d(cj , sk)1(B|sk|(0) ∩Π2 = ∅)

×1(Oα
d(cj ,sk)(sk, 0) ∩Π1 = ∅)1(d(cj , sk) ≤ |sk|)]

(15)

= λ2

∫

R2
E0

2[
∑

cj∈Π1

d(cj , x)1(B|x|(−x) ∩Π2 = ∅)

×1(Oα
d(cj ,x)(x, 0) ∩Π1 = ∅)1(d(cj , x) ≤ |x|)]dx

(16)

= λ2

∫

R2
e−λ2π|x|2E[

∑

cj∈Π1

d(cj , x)

×1(Oα
d(cj ,x)(x, 0) ∩Π1 = ∅)1(d(cj , x) ≤ |x|)]dx

(17)

= λ1λ2

∫

R2

∫

∆x

d(y, x)e−λ2π|x|2−λ1|Oα
d(y,x)(x,0)|dydx

(18)

where∆x = {y ∈ R2 | α|x| ≤ d(y, x) ≤ |x|} = Oα
|x|(x, 0).

Eq.(15) follows by the independence ofΠ0 and Π1, Π2.
Eq.(16) follows by the the refined Campbell’s Theorem [20],
In Eq.(17) we have explicitly computed the void probability
for the event associated withΠ2 and used the independence
of Π1 andΠ2. Finally in Eq.(18) we have applied Campbell’s
Theorem once more and explicitly computed the void proba-
bility of the remaining event. Note that for a sensor at position
0 and sink at locationx, the energy cost functiond(y, x)
associated with using an intervening compressory must satisfy
α|x| ≤ d(y, x) ≤ |x| hence the range of integration in∆x.
This completes the proof of (4). The right hand side of Eq.(18)
can be rewritten as

λ1λ2

∫

R2
e−λ2π|x|2

{∫

∆x

d(y, x)e−λ1|Oα
d(y,x)(x,0)|dy

}
dx. (19)

Now let u = d(y, x) and note that the inner integration in
(19) depends only onu, sincex constant and|Oα

d(y,x)(x, 0)| =
|Oα

u (x, 0)|. This permits a change of variables, and rewriting
the inner integral in (19) as follows –see [17] for more details.

λ1λ2

∫

R2
e−λ2π|x|2

∫ |x|

α|x|
ue−λ1|Oα

u (x,0)| ∂|Oα
u (x, 0)|
∂u

dudx

= λ2

∫

R2
e−λ2π|x|2

{
−|x|e−λ1f(α)|x|2 + α|x|

+
∫ |x|

α|x|
e−λ1|Oα

u (x,0)|du

}
dx. (20)

Now we use the following fact to bound the integration within
the bracket of the right hand side of Eq. (20).

Fact 1: The area of a Cartesian ovalOα
u (x, 0), when

α|x| ≤ u ≤ |x| and 0 ≤ α ≤ 1, is lower bounded by

|Oα
u (x, 0)| ≥ f(α)

(1− α)2
(u− α|x|)2
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with f(α) as given by (2). The bound is tight forα = 0.
Thus (20) can be bounded as follows:

(20) ≤ λ2

∫

R2
e−λ2π|x|2

{
−|x|e−λ1f(α)|x|2

+α|x|+
∫ |x|

α|x|
e
−λ1

f(α)
(1−α)2

(u−α|x|)2
du

}
dx

=
α

2
√

λ2

+
1− α

2
√

λ2 + λ1f(α)/π
− λ2πΓ(3/2)

(λ2π + λ1f(α))3/2
.

This gives the desired upper bound̂GU as follows.

GU =
λ0

λ2
·

{
λ2πΓ(3/2)

(λ2π + λ1f(α))3/2

︸ ︷︷ ︸
avg. cost when the typical sensor is in a sink cell

+ λ1λ2

∫

R2

∫

∆x

d(y, x)e−λ2π|x|2−λ1|Oα
d(y,x)(x,0)|dydx

}

︸ ︷︷ ︸
avg. cost when the typical sensor is in a compressor cell

≤ λ0

λ2

{
α

2
√

λ2

+
1− α

2
√

λ2 + λ1f(α)/π

}
= ĜU .
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